EconPapers    
Economics at your fingertips  
 

A new network model for extracting text keywords

Liu Yang (), Keping Li and Hangfei Huang
Additional contact information
Liu Yang: Beijing Jiaotong University
Keping Li: Beijing Jiaotong University
Hangfei Huang: Beijing Jiaotong University

Scientometrics, 2018, vol. 116, issue 1, 339-361

Abstract: Abstract Text keywords are defined as meaningful and important words in a document, which provide a precise overview of its content and reflect the author’s writing intention. Keyword extraction methods have received a lot of attentions, among which is the network-based method. However, existing network-based keyword extraction methods only consider the connections between words in a document, while ignoring the impact of sentences. Since a sentence is made of many words, while words affect one another in a sentence, neglecting the influence of sentences will result in the loss of information. In this paper, we introduce a word network whose nodes represent words in a document, and define that any keyword extraction method based on a word network is called as a Word-net method. Then, we propose a new network model which considers the influence of sentences, and a new word-sentence method based on the new model. Experimental results demonstrate that our method outperforms the Word-net method, the classical term frequency-inverse document frequency (TF-IDF) method, most frequent method and TextRank method. The precision, recall, and F-measure of our result are respectively 7.95, 8.27 and 6.54% higher than the Word-net result, and the average precision of our result is 17.56% higher than the TF-IDF result. A two-way analysis of variance is employed to validate the empirical analysis, which indicates that keyword extraction methods and keyword numbers have statistically significant effects on the evaluation of metric values.

Keywords: Keyword extraction; Complex network; Synthetic eigenvalue; Text keyword; Network theory (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2743-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2743-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla ().

 
Page updated 2019-04-09
Handle: RePEc:spr:scient:v:116:y:2018:i:1:d:10.1007_s11192-018-2743-5