Discovering cross-topic collaborations among researchers by exploiting weighted association rules
Luca Cagliero (),
Paolo Garza (),
Mohammad Reza Kavoosifar () and
Elena Baralis ()
Additional contact information
Luca Cagliero: Politecnico di Torino
Paolo Garza: Politecnico di Torino
Mohammad Reza Kavoosifar: Politecnico di Torino
Elena Baralis: Politecnico di Torino
Scientometrics, 2018, vol. 116, issue 2, No 32, 1273-1301
Abstract:
Abstract Identifying the most relevant scientific publications on a given topic is a well-known research problem. The Author-Topic Model (ATM) is a generative model that represents the relationships between research topics and publication authors. It allows us to identify the most influential authors on a particular topic. However, since most research works are co-authored by many researchers the information provided by ATM can be complemented by the study of the most fruitful collaborations among multiple authors. This paper addresses the discovery of research collaborations among multiple authors on single or multiple topics. Specifically, it exploits an exploratory data mining technique, i.e., weighted association rule mining, to analyze publication data and to discover correlations between ATM topics and combinations of authors. The mined rules characterize groups of researchers with fairly high scientific productivity by indicating (1) the research topics covered by their most cited publications and the relevance of their scientific production separately for each topic, (2) the nature of the collaboration (topic-specific or cross-topic), (3) the name of the external authors who have (occasionally) collaborated with the group either on a specific topic or on multiple topics, and (4) the underlying correlations between the addressed topics. The applicability of the proposed approach was validated on real data acquired from the Online Mendelian Inheritance in Man catalog of genetic disorders and from the PubMed digital library. The results confirm the effectiveness of the proposed strategy.
Keywords: Author Topic Model; Weighted association rule mining; Data mining; Knowledge discovery (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2737-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2737-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2737-3
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().