Joint modeling of the association between NIH funding and its three primary outcomes: patents, publications, and citation impact
Fengqing Zhang (),
Erjia Yan,
Xin Niu and
Yongjun Zhu
Additional contact information
Fengqing Zhang: Drexel University
Erjia Yan: Drexel University
Xin Niu: Drexel University
Yongjun Zhu: Sungkyunkwan University
Scientometrics, 2018, vol. 117, issue 1, No 32, 602 pages
Abstract:
Abstract This paper examines the impact of NIH funding on research outcomes using data from 108,803 projects funded by NIH between January 2009 and March 2017. We extend the prior knowledge on this topic by incorporating the correlation structure of multiple research outcomes, as well as a comprehensive list of grant-level features capturing information on funding size, gender composition and funding type. Specifically, we utilize partial least squares regression (PLS) to jointly model all three primary outcomes (publications, patents and citation impact) and identify the effects of grant-level features on research outputs. Our results show that joint modeling of research outcomes via PLS yields a more accurate prediction than analyzing each outcome separately. Additionally, we find that when other grant-level features are held constant, a 2-year-longer project duration would produce a similar improvement in research outputs to that achieved by $1 million in additional funding. Based on this finding, we recommend no-cost extension of funded projects instead of increased funding support to achieve a comparable increase in research outputs. Promoting multi-organizational grants is found to be more effective for increasing patents, whereas encouraging multiple-PI grants is more productive in terms of publications and citation impact. Of the various NIH grant types, program project/center grants (P series) and research training grants (T series) are the two most productive and impactful. Results also suggest that projects with a higher proportion of male PIs tend to produce more research outputs. This finding, however, needs to be interpreted with caution due to the limitation of our data set.
Keywords: NIH funding; Patent; Publication; Citation impact; Joint modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2846-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:117:y:2018:i:1:d:10.1007_s11192-018-2846-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2846-z
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().