Topic based research competitiveness evaluation
Tingcan Ma,
Ruinan Li,
Guiyan Ou and
Mingliang Yue ()
Additional contact information
Tingcan Ma: Chinese Academy of Sciences
Ruinan Li: Chinese Academy of Sciences
Guiyan Ou: Chinese Academy of Sciences
Mingliang Yue: Chinese Academy of Sciences
Scientometrics, 2018, vol. 117, issue 2, No 7, 789-803
Abstract:
Abstract Research competitiveness analysis refers to the measurement, comparison and analysis of the research status (i.e., strength and/or weakness) of different scientific research bodies (e.g., institutions, researchers, etc.) in different research fields. Improving research competitiveness analysis method can be conducive to accurately obtaining the research status of research fields and research bodies. This paper presents a method of evaluating the competitiveness of research institutions based on research topic distribution. The method uses the LDA topic model to obtain a paper-topic distribution matrix to objectively assign the academic impact of papers (such as number of citations) to research topics. Then the method calculates the competitiveness of each research institution on each research topic with the help of an institution-paper matrix. Finally, the competitiveness and the research strength and/or weakness of the institutions are defined and characterized. A case study shows that the method can lead to an objective and effective evaluation of the research competitiveness of research institutions in a given research field.
Keywords: Research competitiveness; Topic model; Evaluation method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2891-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:117:y:2018:i:2:d:10.1007_s11192-018-2891-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2891-7
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().