Identification of important citations by exploiting research articles’ metadata and cue-terms from content
Faiza Qayyum () and
Muhammad Tanvir Afzal ()
Additional contact information
Faiza Qayyum: Capital University of Science and Technology
Muhammad Tanvir Afzal: Capital University of Science and Technology
Scientometrics, 2019, vol. 118, issue 1, No 2, 43 pages
Abstract:
Abstract Citations play a pivotal role in indicating various aspects of scientific literature. Quantitative citation analysis approaches have been used over the decades to measure the impact factor of journals, to rank researchers or institutions, to discover evolving research topics etc. Researchers doubted the pure quantitative citation analysis approaches and argued that all citations are not equally important; citation reasons must be considered while counting. In the recent past, researchers have focused on identifying important citation reasons by classifying them into important and non-important classes rather than individually classifying each reason. Most of contemporary citation classification techniques either rely on full content of articles, or they are dominated by content based features. However, most of the time content is not freely available as various journal publishers do not provide open access to articles. This paper presents a binary citation classification scheme, which is dominated by metadata based parameters. The study demonstrates the significance of metadata and content based parameters in varying scenarios. The experiments are performed on two annotated data sets, which are evaluated by employing SVM, KLR, Random Forest machine learning classifiers. The results are compared with the contemporary study that has performed similar classification employing rich list of content-based features. The results of comparisons revealed that the proposed model has attained improved value of precision (i.e., 0.68) just by relying on freely available metadata. We claim that the proposed approach can serve as the best alternative in the scenarios wherein content in unavailable.
Keywords: Citation classification; Metadata; Information retrieval; Support vector machine; Kernel logistic regression; Random forest (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-018-2961-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:118:y:2019:i:1:d:10.1007_s11192-018-2961-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-018-2961-x
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().