Which can better predict the future success of articles? Bibliometric indices or alternative metrics
Mingyang Wang,
Zhenyu Wang and
Guangsheng Chen ()
Additional contact information
Mingyang Wang: Northeast Forestry University
Zhenyu Wang: Northeast Forestry University
Guangsheng Chen: Northeast Forestry University
Scientometrics, 2019, vol. 119, issue 3, No 12, 1575-1595
Abstract:
Abstract In this paper, we made a survey on the prediction capability of bibliometric indices and alternative metrics on the future success of articles by establishing a machine learning framework. Twenty-three bibliometric and alternative indices were collected to establish the feature space for the predication task. In order to eliminate the possible redundancy in feature space, three feature selection techniques of Relief-F, principal component analysis and entropy weighted method were used to rank the features according to their contribution to the original data set. Combining the fractal dimension of the data set, the intrinsic features which can better represent the original feature space were extracted. Three classifiers of Naïve Bayes, KNN and random forest were performed to detect the classification performance of these features. Experimental results show that both bibliometric indices and alternative metrics are beneficial to articles’ growth. Early citation features, early Web usage statistics, as well as the reputation of the first author are the most valuable indicators in making an article more influential in the future.
Keywords: Highly-cited papers; Bibliometric index; Alternative metrics; Machine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03052-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:119:y:2019:i:3:d:10.1007_s11192-019-03052-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-019-03052-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().