EconPapers    
Economics at your fingertips  
 

Using mutual information as a cocitation similarity measure

Lukun Zheng ()
Additional contact information
Lukun Zheng: Western Kentucky University

Scientometrics, 2019, vol. 119, issue 3, No 18, 1695-1713

Abstract: Abstract The debate regarding to which similarity measure can be used in co-citation analysis lasted for many years. The mostly debated measure is Pearson’s correlation coefficient r. It has been used as similarity measure in literature since the beginning of the technique in the 1980s. However, some researchers criticized using Pearson’s r as a similarity measure because it does not fully satisfy the mathematical conditions of a good similarity metric and (or) because it doesn’t meet some natural requirements a similarity measure should satisfy. Alternative similarity measures like cosine measure and chi square measure were also proposed and studied, which resulted in more controversies and debates about which similarity measure to use in co-citation analysis. In this article, we put forth the hypothesis that the researchers with high mutual information are closely related to each other and that the mutual information can be used as a similarity measure in author co-citation analysis. Given two researchers, the mutual information between them can be calculated based on their publications and their co-citation frequencies. A mutual information proximity matrix is then constructed. This proximity matrix meet the two requirements formulated by Ahlgren et al. (J Am Soc Inf Sci Technol 54(6):550–560, 2003). We conduct several experimental studies for the validation of our hypothesis and the results using mutual information are compared to the results using other similarity measures.

Keywords: Author co-citation analysis; Similarity measures; Mutual information (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03098-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:119:y:2019:i:3:d:10.1007_s11192-019-03098-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-019-03098-9

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:119:y:2019:i:3:d:10.1007_s11192-019-03098-9