A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science
Zhichao Ba (),
Yujie Cao (),
Jin Mao () and
Gang Li ()
Additional contact information
Zhichao Ba: Wuhan University
Yujie Cao: Wuhan University
Jin Mao: Wuhan University
Gang Li: Wuhan University
Scientometrics, 2019, vol. 119, issue 3, No 7, 1455-1486
Abstract:
Abstract As a driver in modern science, interdisciplinary research has attracted a lot of attention. Major foci are laid on exploring the relations of multiple involved disciplines as well as the knowledge structure in interdisciplinary field. However, there is still a lack of decomposing the knowledge structure of interdisciplinary field to investigate how knowledge from relevant disciplines is integrated in the field. This study proposes an approach to investigating knowledge integration relationships between two research fields from a perspective of hierarchy. Medical Informatics (MI) and its most relevant field of Computer Science (CS) are chosen in the case study. This study decomposed each keyword network of the two fields into four layers by using the K-core method, then quantified the knowledge integration relationships between different layers of the two fields together. The results present that the MI basic layer shows the strongest knowledge integration with CS, followed by the middle layer, with the detail layer the weakest. And all MI layers have the greatest breadth and strength of knowledge integration with the CS middle layer, followed by the CS marginal layer and detail layer, but with the CS basic layer the weakest. A time series analysis shows that the integration of new CS knowledge into MI is a gradual process without explosive growth and the path of knowledge integration between the two fields were identified. The proposed approach could be applied to deeply understanding the integration of one discipline knowledge by an interdisciplinary field.
Keywords: Interdisciplinary research; Knowledge network; Hierarchical structure; K-core; Knowledge layers; 05C38; 68T30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03103-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:119:y:2019:i:3:d:10.1007_s11192-019-03103-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-019-03103-1
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().