Application of entity linking to identify research fronts and trends
Mauricio Marrone ()
Additional contact information
Mauricio Marrone: Macquarie University
Scientometrics, 2020, vol. 122, issue 1, No 16, 357-379
Abstract:
Abstract Studying research fronts enables researchers to understand how their academic fields emerged, how they are currently developing and their changes over time. While topic modelling tools help discover themes in documents, they employ a “bag-of-words” approach and require researchers to manually label categories, specify the number of topics a priori, and make assumptions about word distributions in documents. This paper proposes an alternative approach based on entity linking, which links word strings to entities from a knowledge base, to help solve issues associated with “bag-of-words” approaches by automatically identifying topics based on entity mentions. To study topic trends and popularity, we use four indicators—Mann–Kendall’s test, Sen’s slope analysis, z-score values and Kleinberg’s burst detection algorithm. The combination of these indicators helps us understand which topics are particularly active (“hot” topics), which are decreasing (“cold” topics or past “bursty” topics) and which are maturely developed. We apply the approach and indicators to the fields of Information Science and Accounting.
Keywords: Natural Language Processing; Content Analysis and Indexing; Burstiness; Information Storage and Retrieval; Text analysis; Entity annotation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03274-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03274-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-019-03274-x
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().