Deep and narrow impact: introducing location filtered citation counting
Dangzhi Zhao () and
Andreas Strotmann
Additional contact information
Dangzhi Zhao: University of Alberta
Andreas Strotmann: ScienceXplore
Scientometrics, 2020, vol. 122, issue 1, No 23, 503-517
Abstract:
Abstract The present study tests a citation counting method that filters out citations in the introductory and backgrounds sections and then weighs the remaining citations by their in-text frequency. The dataset used comprises articles on bibliometrics available in full text in PubMed Central. This method was inspired by findings from previous studies that in-text frequency indicates importance of citations and citations in Methodology, Results, Discussion, and Conclusions sections tend to be more important to a citing article. We found that this method makes a large difference in author ranking as suggested by a 0.4 correlation between ranking by this method and that by traditional citation counting. Generally, this method has ranked authors concerning biomedical issues higher and those focused on bibliometrics or science communication issues lower compared to traditional citation counting. This rank change pattern suggests that this method appears to have made essential citations stand out more, i.e., citations that studies concerning biomedicine are expected to draw on more heavily. This method has also ranked guidelines or theoretical or methodological frameworks for systematic reviews, meta-analyses, knowledge translation, and scoping studies much higher, indicating that Bibliometrics has been mostly employed in these types of studies in biomedical fields. Unfortunately, citation network analysis doesn’t seem to have been employed much as indicated by key authors representing science mapping being ranked much lower by this method although it has been shown to be informative for these types of studies.
Keywords: Citation analysis; Weighted citation analysis; Location-filtered citation counting; Research evaluation; Bibliometrics; Biomedical research fields (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03280-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03280-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-019-03280-z
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().