A framework towards bias-free contextual productivity assessment
Susan George (),
Hiran H. Lathabai (),
Thara Prabhakaran () and
Manoj Changat ()
Additional contact information
Susan George: University of Kerala
Hiran H. Lathabai: University of Kerala
Thara Prabhakaran: University of Kerala
Manoj Changat: University of Kerala
Scientometrics, 2020, vol. 122, issue 1, No 8, 127-157
Abstract:
Abstract Productivity assessment of various actors is one of the major concerns of Scientometrics and is vital for many applications that include policymaking. Popular productivity indices are not suitable for the determination of productivity of actors within a research context. A framework for the generation of metrics for contextual productivity assessment based on network approach has been recently proposed. However, that framework used full counting or full credit allocation, which incurs inflationary and equalizing bias. Schemes such as fractional and harmonic counting could reduce inflationary bias and harmonic counting has a repute of minimizing equalizing bias. As the existing framework for contextual productivity assessment is prone to inflationary and equalizing bias, empowering it with the provision to determine the right credit allocation scheme might take us closer to the achievement of a bias-free framework. In this work, a method to quantify the biases and to decide the right credit allocation scheme is introduced and using this we revamp the existing framework. As a case study, the productivity of inventors in the field ‘Wireless Power Transmission’ is determined. Implications from the real-world case study signify the effectiveness of the framework.
Keywords: Bias-free productivity assessment; Contextual productivity assessment; Fractional counting; Harmonic counting; Patent-inventor network; Affiliation networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-019-03286-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03286-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-019-03286-7
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().