Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis
Shengli Deng and
Sudi Xia ()
Additional contact information
Shengli Deng: Wuhan University School of Information Management
Sudi Xia: Wuhan University School of Information Management
Scientometrics, 2020, vol. 124, issue 1, No 20, 489-513
Abstract:
Abstract Information behavior research is an interdisciplinary field in essence due to the investigation of interdisciplinary in previous work. To track the changes in interdisciplinarity of this field, more efforts should be put on basis of previous work. Based on publications searched from Web of Science from 2000 to 2018, we explored the interdisciplinarity of this field drawing on network analysis and diversity measure. Findings showed that although variety of disciplines in this field augmented significantly, the distribution of disciplines is unbalanced and concentrated on some dominant disciplines such as computer science, engineering, psychology, social science and medicine, etc. Relationships among disciplines have evolved over time and mainly focused on neighboring disciplines instead of distinct disciplines. Computer science, engineering, psychology, health science and social science function as intermediate disciplines connecting distinct disciplinary groups. Besides, the measurement using diversity measure shows that interdisciplinary degree of this field appears to decrease. This study contributes to the evolution and measurement of interdisciplinarity of information behavior research, which has implications for researchers and practitioners in this field.
Keywords: Information behavior research; Interdisciplinarity; Diversity measure; Co-occurrence analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03465-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:124:y:2020:i:1:d:10.1007_s11192-020-03465-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03465-x
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().