A clustering-based approach for the evaluation of candidate emerging technologies
Serkan Altuntas (),
Zulfiye Erdogan () and
Turkay Dereli ()
Additional contact information
Serkan Altuntas: Yildiz Technical University
Zulfiye Erdogan: Iskenderun Technical University
Turkay Dereli: Iskenderun Technical University
Scientometrics, 2020, vol. 124, issue 2, No 17, 1157-1177
Abstract:
Abstract The aim of this study is to propose a clustering-based approach based on patent information for the evaluation of candidate emerging technologies. The proposed approach uses patent analysis and clustering approaches in data mining. Patent analysis is a widely used method for the evaluation of candidate emerging technologies in the literature. The clustering algorithms used in this study are self-organizing maps, expected maximization and density-based clustering. A real-life application on dental implant technology is presented to show how the proposed approach works in practice. The contributions of this study are twofold. This study contributes to the literature by taking into account claims, forward citations, backward citations, technology cycle times, and technology scores for the evaluation of candidate emerging technologies. Second, the evaluation of dental implant technology with respect to claims, forward citations, backward citations, technology cycle times, and technology scores has not been conducted so far. The results obtained from the application shows that dental implant technology is an candidate emerging technology and the proposed approach can be easily conducted in real life case studies.
Keywords: Candidate emerging technologies; Dental implant technology; Patent analysis; Clustering algorithms; Technology indexes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03535-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:124:y:2020:i:2:d:10.1007_s11192-020-03535-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03535-0
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().