EconPapers    
Economics at your fingertips  
 

Two layer-based trajectory analysis of the research trend in automotive fuel industry

Na Kyeong Lee, Yukyeong Han, Wei Xong and Min Song ()
Additional contact information
Na Kyeong Lee: Seoul Women’s University
Yukyeong Han: Yonsei University
Wei Xong: Hagan School of Business, Iona College
Min Song: Yonsei University

Scientometrics, 2020, vol. 124, issue 3, No 1, 1719 pages

Abstract: Abstract The increasing concern of climate change and unstable oil prices induce the development of technological fuel in automobile industry. To investigate such a rapidly changing path, researchers apply bibliometrics and topic modeling to patent data. These commonly used methods, however, have several drawbacks such as considering macro-level trend only and focusing on high probable terms. To avoid these weaknesses, we propose the two-layer trend analysis based on Time country topic model (TCT) and Dirichlet compound multinomial model (DCM) that enable to detect both macro-level and micro-level trend and identify bursty terms in automotive industry. Experimental results show rising, falling and fluctuating trend topics on condition of countries using TCT model. We also find path of automotive technology based on bursty terms from the analysis of DCM model. Specifically, electric vehicle, aluminum in lightweight material and diesel engine are considered as rising topics in the automobile fuel. Our proposed framework can be applied to analyze the trajectory analysis in various other fields.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03506-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03506-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-020-03506-5

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:124:y:2020:i:3:d:10.1007_s11192-020-03506-5