A structural topic model approach to scientific reorientation of economics and chemistry after German reunification
Andreas Rehs
Scientometrics, 2020, vol. 125, issue 2, No 24, 1229-1251
Abstract:
Abstract The detection of differences or similarities in large numbers of scientific publications is an open problem in scientometric research. In this paper we therefore develop and apply a machine learning approach based on structural topic modelling in combination with cosine similarity and a linear regression framework in order to identify differences in dissertation titles written at East and West German universities before and after German reunification. German reunification and its surrounding time period is used because it provides a structure with both minor and major differences in research topics that could be detected by our approach. Our dataset is based on dissertation titles in economics and business administration and chemistry from 1980 to 2010. We use university affiliation and year of the dissertation to train a structural topic model and then test the model on a set of unseen dissertation titles. Subsequently, we compare the resulting topic distribution of each title to every other title with cosine similarity. The cosine similarities and the regional and temporal origin of the dissertation titles they come from are then used in a linear regression approach. Our results on research topics in economics and business administration suggest substantial differences between East and West Germany before the reunification and a rapid conformation thereafter. In chemistry we observe minor differences between East and West before the reunification and a slightly increased similarity thereafter.
Keywords: Topic modelling; German reunification; Dissertations; Structural topic modelling; Research field mapping (search for similar items in EconPapers)
JEL-codes: O33 O52 P30 Z13 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03640-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:125:y:2020:i:2:d:10.1007_s11192-020-03640-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03640-0
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().