EconPapers    
Economics at your fingertips  
 

Constructing and evaluating automated literature review systems

Jason Portenoy () and Jevin D. West ()
Additional contact information
Jason Portenoy: University of Washington
Jevin D. West: University of Washington

Scientometrics, 2020, vol. 125, issue 3, No 58, 3233-3251

Abstract: Abstract Automated literature reviews have the potential to accelerate knowledge synthesis and provide new insights. However, a lack of labeled ground-truth data has made it difficult to develop and evaluate these methods. We propose a framework that uses the reference lists from existing review papers as labeled data, which can then be used to train supervised classifiers, allowing for experimentation and testing of models and features at a large scale. We demonstrate our framework by training classifiers using different combinations of citation- and text-based features on 500 review papers. We use the R-Precision scores for the task of reconstructing the review papers’ reference lists as a way to evaluate and compare methods. We also extend our method, generating a novel set of articles relevant to the fields of misinformation studies and science communication. We find that our method can identify many of the most relevant papers for a literature review from a large set of candidate papers, and that our framework allows for development and testing of models and features to incrementally improve the results. The models we build are able to identify relevant papers even when starting with a very small set of seed papers. We also find that the methods can be adapted to identify previously undiscovered articles that may be relevant to a given topic.

Keywords: Citation networks; Scholarly recommendation; Big scholarly data; Autoreview (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03490-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03490-w

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-020-03490-w

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03490-w