Scientific collaboration of researchers and organizations: a two-level blockmodeling approach
Marjan Cugmas (),
Franc Mali and
Aleš Žiberna
Additional contact information
Marjan Cugmas: University of Ljubljana
Franc Mali: University of Ljubljana
Aleš Žiberna: University of Ljubljana
Scientometrics, 2020, vol. 125, issue 3, No 26, 2489 pages
Abstract:
Abstract The development and successful implementation of R&D policies depends on understanding patterns of scientific collaboration (SC). Existing studies on SC typically focus on the individual level, despite SC occurring on many interdependent social levels. Therefore, this paper provides a simultaneous insight into SC patterns among researchers (individual level) and among organizations (organizational level) in the social sciences. SC on the individual level is operationalized by co-authorship of a scientific paper whereas two organizations are said to collaborate if they share a research project. Based on data for the period 2006–2015 retrieved from Slovenian national information systems, two-level collaboration networks were formed with respect to researchers in the social sciences field. These networks were analyzed using a k-means-based blockmodeling approach for linked networks. The results show a high level of interdisciplinary SC and a large organizational impact on individual collaborations. On the individual level, a structure with several cohesive clusters and a semi-periphery appears while, on the organizational level, a kind a core–periphery structure emerges in which both the core and periphery can be split into several clusters. The most surprising result indicates that SC on the level of organizations is often not reflected in common published scientific papers on the individual level (and vice versa).
Keywords: Social networks; Scientific collaboration; Multilevel networks; Co-authorship networks; Blockmodeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03708-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03708-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03708-x
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().