Evolution of research topics in LIS between 1996 and 2019: an analysis based on latent Dirichlet allocation topic model
Xiaoyao Han ()
Additional contact information
Xiaoyao Han: Humboldt Universität zu Berlin
Scientometrics, 2020, vol. 125, issue 3, No 31, 2595 pages
Abstract:
Abstract This study investigated the evolution of library and information science (LIS) by analyzing research topics in LIS journal articles. The analysis is divided into five periods covering the years 1996–2019. Latent Dirichlet allocation modeling was used to identify underlying topics based on 14,035 documents. An improved data-selection method was devised in order to generate a dynamic journal list that included influential journals for each period. Results indicate that (a) library science has become less prevalent over time, as there are no top topic clusters relevant to library issues since the period 2000–2005; (b) bibliometrics, especially citation analysis, is highly stable across periods, as reflected by the stable subclusters and consistent keywords; and (c) information retrieval has consistently been the dominant domain with interests gradually shifting to model-based text processing. Information seeking and behavior is also a stable field that tends to be dispersed among various topics rather than presented as its own subject. Information systems and organizational activities have been continuously discussed and have developed a closer relationship with e-commerce. Topics that occurred only once have undergone a change of technological context from the networks and Internet to social media and mobile applications.
Keywords: Library and information science; LDA; Research trends (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03721-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:125:y:2020:i:3:d:10.1007_s11192-020-03721-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03721-0
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().