Big data augmentated business trend identification: the case of mobile commerce
Ozcan Saritas (),
Pavel Bakhtin (),
Ilya Kuzminov and
Elena Khabirova
Additional contact information
Ozcan Saritas: National Research University Higher School of Economics
Pavel Bakhtin: National Research University Higher School of Economics
Scientometrics, 2021, vol. 126, issue 2, No 28, 1553-1579
Abstract:
Abstract Identifying and monitoring business and technological trends are crucial for innovation and competitiveness of businesses. Exponential growth of data across the world is invaluable for identifying emerging and evolving trends. On the other hand, the vast amount of data leads to information overload and can no longer be adequately processed without the use of automated methods of extraction, processing, and generation of knowledge. There is a growing need for information systems that would monitor and analyse data from heterogeneous and unstructured sources in order to enable timely and evidence-based decision-making. Recent advancements in computing and big data provide enormous opportunities for gathering evidence on future developments and emerging opportunities. The present study demonstrates the use of text-mining and semantic analysis of large amount of documents for investigating in business trends in mobile commerce (m-commerce). Particularly with the on-going COVID-19 pandemic and resultant social isolation, m-commerce has become a large technology and business domain with ever growing market potentials. Thus, our study begins with a review of global challenges, opportunities and trends in the development of m-commerce in the world. Next, the study identifies critical technologies and instruments for the full utilization of the potentials in the sector by using the intelligent big data analytics system based on in-depth natural language processing utilizing text-mining, machine learning, science bibliometry and technology analysis. The results generated by the system can be used to produce a comprehensive and objective web of interconnected technologies, trends, drivers and barriers to give an overview of the whole landscape of m-commerce in one business intelligence (BI) data mart diagram.
Keywords: M-commerce; COVID-19; Natural language processing; Machine learning; Horizon scanning; Tech mining; Global trends (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03807-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:2:d:10.1007_s11192-020-03807-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-020-03807-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().