EconPapers    
Economics at your fingertips  
 

Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)

Andrej Kastrin () and Dimitar Hristovski
Additional contact information
Andrej Kastrin: University of Ljubljana
Dimitar Hristovski: University of Ljubljana

Scientometrics, 2021, vol. 126, issue 2, No 23, 1415-1451

Abstract: Abstract Literature-based discovery (LBD) aims to discover valuable latent relationships between disparate sets of literatures. This paper presents the first inclusive scientometric overview of LBD research. We utilize a comprehensive scientometric approach incorporating CiteSpace to systematically analyze the literature on LBD from the last four decades (1986–2020). After manual cleaning, we have retrieved a total of 409 documents from six bibliographic databases and two preprint servers. The 35 years’ history of LBD could be partitioned into three phases according to the published papers per year: incubation (1986–2003), developing (2004–2008), and mature phase (2009–2020). The annual production of publications follows Price’s law. The co-authorship network exhibits many subnetworks, indicating that LBD research is composed of many small and medium-sized groups with little collaboration among them. Science mapping reveals that mainstream research in LBD has shifted from baseline co-occurrence approaches to semantic-based methods at the beginning of the new millennium. In the last decade, we can observe the leaning of LBD towards modern network science ideas. In an applied sense, the LBD is increasingly used in predicting adverse drug reactions and drug repurposing. Besides theoretical considerations, the researchers have put a lot of effort into the development of Web-based LBD applications. Nowadays, LBD is becoming increasingly interdisciplinary and involves methods from information science, scientometrics, and machine learning. Unfortunately, LBD is mainly limited to the biomedical domain. The cascading citation expansion announces deep learning and explainable artificial intelligence as emerging topics in LBD. The results indicate that LBD is still growing and evolving.

Keywords: Literature-based discovery; Scientometrics; Information visualization; CiteSpace (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-020-03811-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:2:d:10.1007_s11192-020-03811-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-020-03811-z

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:126:y:2021:i:2:d:10.1007_s11192-020-03811-z