EconPapers    
Economics at your fingertips  
 

Reliability of researcher capacity estimates and count data dispersion: a comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models

Boris Forthmann () and Philipp Doebler
Additional contact information
Boris Forthmann: University of Münster
Philipp Doebler: TU Dortmund University

Scientometrics, 2021, vol. 126, issue 4, No 27, 3337-3354

Abstract: Abstract Item-response models from the psychometric literature have been proposed for the estimation of researcher capacity. Canonical items that can be incorporated in such models to reflect researcher performance are count data (e.g., number of publications, number of citations). Count data can be modeled by Rasch’s Poisson counts model that assumes equidispersion (i.e., mean and variance must coincide). However, the mean can be larger as compared to the variance (i.e., underdispersion), or b) smaller as compared to the variance (i.e., overdispersion). Ignoring the presence of overdispersion (underdispersion) can cause standard errors to be liberal (conservative), when the Poisson model is used. Indeed, number of publications or number of citations are known to display overdispersion. Underdispersion, however, is far less acknowledged in the literature. In the current investigation the flexible Conway-Maxwell-Poisson count model is used to examine reliability estimates of capacity in relation to various dispersion patterns. It is shown, that reliability of capacity estimates of inventors drops from .84 (Poisson) to .68 (Conway-Maxwell-Poisson) or .69 (negative binomial). Moreover, with some items displaying overdispersion and some items displaying underdispersion, the dispersion pattern in a reanalysis of Mutz and Daniel’s (2018b) researcher data was found to be more complex as compared to previous results. To conclude, a careful examination of competing models including the Conway-Maxwell-Poisson count model should be undertaken prior to any evaluation and interpretation of capacity reliability. Moreover, this work shows that count data psychometric models are well suited for decisions with a focus on top researchers, because conditional reliability estimates (i.e., reliability depending on the level of capacity) were highest for the best researchers.

Keywords: Researcher capacity; Item response models; Rasch Poisson count model; Conway-Maxwell-Poisson count model; Dispersion; Reliability; 62P25 (search for similar items in EconPapers)
JEL-codes: C18 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-03864-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03864-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-021-03864-8

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:126:y:2021:i:4:d:10.1007_s11192-021-03864-8