Expert recommendations based on link prediction during the COVID-19 outbreak
Hui Wang () and
ZiChun Le ()
Additional contact information
Hui Wang: Zhejiang University of Technology
ZiChun Le: Zhejiang University of Technology
Scientometrics, 2021, vol. 126, issue 6, No 6, 4639-4658
Abstract:
Abstract Since the emergence of COVID-19, the number of infections has significantly increased. As of April 7, 8:00 am, the total number of global infections has already reached 1,338,415, with the number of deaths being 74,556. Medical experts from various countries have conducted relevant researches in their own fields and countries, and the development of an effective vaccine has been expected soon. Although some progress has been made in the development of therapeutic drugs and vaccines, interdisciplinary and cooperative studies are scarce. However, it is easy to form information islands and conduct repeated scientific research. To date, no therapeutic drug or vaccine for COVID-19 has been officially approved yet for marketing. In this article, the features of experts in cooperation networks, such as graph structure, context attribute, sequential co-occurrence probability, weight features and auxiliary features, are comprehensively analyzed. Based on this, a novel graph neural network + long short-term memory + generative adversarial network (GNN + LSTM + GAN) expert recommendation model based on link prediction is constructed to encourage cooperation among relevant experts in research social networks. Finding experts in related fields, establishing cooperative relations with them and achieving multinational and cross-field expert cooperation are significant to promote the development of therapeutic drugs and vaccines.
Keywords: COVID-19; Expert recommendations; Link prediction; Research social network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-03893-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:6:d:10.1007_s11192-021-03893-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-021-03893-3
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().