Exploiting similarities across multiple dimensions for author name disambiguation
Km. Pooja (),
Samrat Mondal () and
Joydeep Chandra ()
Additional contact information
Km. Pooja: Indian Institute of Technology Patna
Samrat Mondal: Indian Institute of Technology Patna
Joydeep Chandra: Indian Institute of Technology Patna
Scientometrics, 2021, vol. 126, issue 9, No 10, 7525-7560
Abstract:
Abstract In bibliometric analysis, ambiguity in author names may lead to erroneous aggregation of records. The author name disambiguation techniques attempt to address this issue by attributing records to the corresponding author. The name disambiguation has been widely studied as a clustering task. However, maintaining consistent accuracy levels over datasets is still a major challenge. Recent efforts have witnessed the use of representation learning based techniques to map the records to an embedding space that can be used to determine the clusters. However, some of these models that use supervised global embedding fail to generalize across different datasets, while others lag in the accuracy. In this paper, we propose a method that uses two independent relations among the documents-co-authorship and meta-content of document, to generate a latent representation of documents that is capable of generalizing over various datasets (consisting different sets of features). Through rigorous validation, we discover that the proposed approach outperforms several state-of-the-art methods by a significant margin in terms of standard measures like pairwise F1, K metric, and BF1 scores. Moreover, we have also validated the performance of our method with the statistical test.
Keywords: Author name disambiguation; Variational graph autoencoder; Network embedding; Co-author; Meta-content (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-04101-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:126:y:2021:i:9:d:10.1007_s11192-021-04101-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-021-04101-y
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().