Combining informetrics and trend analysis to understand past and current directions in electronic design automation
Christian-Daniel Curiac () and
Alex Doboli ()
Additional contact information
Christian-Daniel Curiac: Technical University of Munich
Alex Doboli: Stony Brook University
Scientometrics, 2022, vol. 127, issue 10, No 4, 5689 pages
Abstract:
Abstract There has been increasing interest in the study of research communities with the goal of optimizing their outcomes and impact. While current methods can predict future trends, they offer little insight about the causes of the trends. However, causal insight is important for strategic decision making to improve a community. This paper presents a new method to predict the possible causes for inefficiencies in a community by relating them to disconnections between trends, like trends in the number of publications, patents, citations, and so on. The method combines traditional scientometric and webometric metrics and metric predictions with a recent model for trend analysis in a community. The proposed method was used to analyze electronic design automation (EDA) domain. The analysis showed intriguing disconnections between the trends of the number of papers, number of granted patents, and impact of its main publications. The analysis suggests a slightly decreasing impact and visibility of EDA, while having less novel, commonly-accepted knowledge in the area. The gained insight suggests three possible strategic decisions to improve EDA community: avoiding to ignore new ideas, reducing the complexity of framed problems, and keeping a minimal gap between real-life needs and academic solutions.
Keywords: Trend analysis; Informetrics; Qualitative analysis; Electronic design automation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04481-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:10:d:10.1007_s11192-022-04481-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-022-04481-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().