A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks
Adilson Vital and
Diego R. Amancio ()
Additional contact information
Adilson Vital: University of São Paulo
Diego R. Amancio: University of São Paulo
Scientometrics, 2022, vol. 127, issue 10, No 19, 6028 pages
Abstract:
Abstract Understanding the evolution of paper and author citations is of paramount importance for the design of research policies and evaluation criteria that can promote and accelerate scientific discoveries. Recently many studies on the evolution of science have been conducted in the context of the emergent Science of Science field. While many studies have probed the link problem in citation networks, only a few works have analyzed the temporal nature of link prediction in author citation networks. In this study we compared the performance of 10 well-known local network similarity measurements with four machine learning models to predict future links in author citations networks. Differently from traditional link prediction methods, the temporal nature of the predict links is relevant for our approach. Our analysis revealed that the Jaccard coefficient was found to be among the most relevant measurements. The preferential attachment measurement, conversely, displayed the worst performance. We also found that the extension of local measurements to their weighted version do not significantly improved the performance of predicting citations. Finally, we also found that a XGBoost and neural network approach summarizing the information from all 10 considered similarity measurements was able to provide the highest AUC performance and competitive precision values.
Keywords: Link prediction; Citation networks; Network similarity; Science of science; Authors citation networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04484-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:10:d:10.1007_s11192-022-04484-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-022-04484-6
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().