EconPapers    
Economics at your fingertips  
 

Academic collaborations: a recommender framework spanning research interests and network topology

Xiaowen Xi, Jiaqi Wei, Ying Guo () and Weiyu Duan
Additional contact information
Xiaowen Xi: Archives of Chinese Academy of Sciences
Jiaqi Wei: China University of Political Science and Law
Ying Guo: China University of Political Science and Law
Weiyu Duan: China University of Political Science and Law

Scientometrics, 2022, vol. 127, issue 11, No 35, 6787-6808

Abstract: Abstract Fruitful academic collaborations have become increasingly more important for solving scientific problems, participating in research projects, and improving productivity. As such, frameworks for recommending suitable collaborators are attracting extensive attention from scholars. In an effort to improve on the current solutions, we have developed an approach that produces recommendations with better precision, recall, and accuracy. Our strategy is to comprehensively consider the similarity of both scholars' research interests and their collaboration network topologies, leveraging the benefits of these two common similarity indicators into one unified collaborator recommendation framework. A Word2Vec model creates word embeddings of research interests, which solves the problem of calculating similarity solely based on co-occurrence, not context, while a Node2Vec model automatically extracts and learns the topological features of a co-authorship network, moving beyond just local features to capture global network features as well. Then the CombMNZ method is used to fuse the results of the two similarity measures. A ranked collaborator list is then generated to recommend potential collaborators to the target scholars. The workings of the framework and its benefits are demonstrated through a case study on academics in the field of intelligent driving and a comparison with the three baselines: Random Walk with Restart (RWR), Latent Dirichlet Allocation (LDA), and Researcher’s Interest Variation with Time (RIVT). Our framework should be of benefit to academics, research centers, and private-enterprise R&D managers who are seeking partners. We hope that, through the framework’s recommendations, collaborators will form strong partnerships and be able to achieve the ultimate goal of completing research projects, solving scientific problems, and promoting discipline development and progress.

Keywords: Academic collaborator recommendation; Research interest; Network topology; Word embedding; Network embedding (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04555-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-022-04555-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04555-8

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-022-04555-8