EconPapers    
Economics at your fingertips  
 

Impact of model settings on the text-based Rao diversity index

Andrea Zielinski ()
Additional contact information
Andrea Zielinski: Fraunhofer Institute for Systems and Innovation Research

Scientometrics, 2022, vol. 127, issue 12, No 47, 7768 pages

Abstract: Abstract Policymakers and funding agencies tend to support scientific work across disciplines, thereby relying on indicators for interdisciplinarity. Recently, text-based quantitative methods have been proposed for the computation of interdisciplinarity that hold promise to have several advantages over the bibliometric approach. In this paper, we provide a systematic analysis of the computation of the text-based Rao index, based on probabilistic topic models, comparing a classical LDA model versus a neural network topic model. We provide a systematic analysis of model parameters that affect the diversity scores and make the interaction between its different components explicit. We present an empirical study on a real data set, upon which we quantify the diversity of the research within several departments of Fraunhofer and Max Planck Society by means of scientific abstracts published in Scopus between 2008 and 2018. Our experiments show that parameter variations, i.e. the choice of the Number of topics, hyper-parameters, and size and balance of the underlying data used for training the model, have a strong effect on the topic model-based Rao metrics. In particular, we could observe that the quality of the topic models impacts on the downstream task of computing the Rao index. Topic models that yield semantically cohesive topics are less affected by fluctuations when varying over the number of topics, and result in more stable measurements of the Rao index.

Keywords: LDA topic model; Rao Stirling; Interdisciplinarity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04312-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:12:d:10.1007_s11192-022-04312-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04312-x

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:12:d:10.1007_s11192-022-04312-x