EconPapers    
Economics at your fingertips  
 

Internationalizing AI: evolution and impact of distance factors

Xuli Tang, Xin Li () and Feicheng Ma
Additional contact information
Xuli Tang: Central China Normal University
Xin Li: Huazhong University of Science and Technology
Feicheng Ma: Wuhan University

Scientometrics, 2022, vol. 127, issue 1, No 7, 205 pages

Abstract: Abstract International collaboration has become imperative in the field of AI. However, few studies exist concerning how distance factors have affected the international collaboration in AI research. In this study, we investigate this problem by using 1,294,644 AI related collaborative papers harvested from the Microsoft Academic Graph dataset. A framework including 13 indicators to quantify the distance factors between countries from 5 perspectives (i.e., geographic distance, economic distance, cultural distance, academic distance, and industrial distance) is proposed. The relationships were conducted by the methods of descriptive analysis and regression analysis. The results show that international collaboration in the field of AI today is not prevalent (only 15.7%). All the separations in international collaborations have increased over years, except for the cultural distance in masculinity/felinity dimension and the industrial distance. The geographic distance, economic distance and academic distances have shown significantly negative relationships with the degree of international collaborations in the field of AI. The industrial distance has a significant positive relationship with the degree of international collaboration in the field of AI. Also, the results demonstrate that the participation of the United States and China have promoted the international collaboration in the field of AI. This study provides a comprehensive understanding of internationalizing AI research in geographic, economic, cultural, academic, and industrial aspects.

Keywords: International collaboration; Artificial intelligence; Geographic distance; Economic distance; Cultural distance; Academic distance; Industrial distance; AI (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-04207-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04207-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-021-04207-3

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:1:d:10.1007_s11192-021-04207-3