EconPapers    
Economics at your fingertips  
 

Research trend prediction in computer science publications: a deep neural network approach

Soroush Taheri () and Sadegh Aliakbary ()
Additional contact information
Soroush Taheri: Shahid Beheshti University
Sadegh Aliakbary: Shahid Beheshti University

Scientometrics, 2022, vol. 127, issue 2, No 9, 849-869

Abstract: Abstract Thousands of research papers are being published every day, and among all these research works, one of the fastest-growing fields is computer science (CS). Thus, learning which research areas are trending in this particular field of study is advantageous to a significant number of scholars, research institutions, and funding organizations. Many scientometric studies have been done focusing on analyzing the current CS trends and predicting future ones from different perspectives as a consequence. Despite the large datasets from this vast number of CS publications and the power of deep learning methods in such big data problems, deep neural networks have not yet been used to their full potential in this area. Therefore, the objective of this paper is to predict the upcoming years’ CS trends using long short-term memory neural networks. Accordingly, CS papers from 1940 and their corresponding fields of study from the microsoft academic graph dataset have been exploited for solving this research trend prediction problem. The prediction accuracy of the proposed method is then evaluated using RMSE and coefficient of determination (R2) metrics. The evaluations show that the proposed method outperforms the baseline approaches in terms of the prediction accuracy in all considered time periods. Subsequently, adopting the proposed method’s predictions, we investigate future trending areas in computer science research from various viewpoints.

Keywords: Scientometrics; Research trends; Time-series prediction; Deep learning; Computer science (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-021-04240-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04240-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-021-04240-2

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04240-2