EconPapers    
Economics at your fingertips  
 

Why was this cited? Explainable machine learning applied to COVID-19 research literature

Lucie Beranová, Marcin P. Joachimiak, Tomáš Kliegr (), Gollam Rabby and Vilém Sklenák
Additional contact information
Lucie Beranová: VSE Praha
Marcin P. Joachimiak: Environmental Genomics and Systems Biology Division at Lawrence Berkeley National Laboratory
Tomáš Kliegr: VSE Praha
Gollam Rabby: VSE Praha
Vilém Sklenák: VSE Praha

Scientometrics, 2022, vol. 127, issue 5, No 8, 2313-2349

Abstract: Abstract Multiple studies have investigated bibliometric factors predictive of the citation count a research article will receive. In this article, we go beyond bibliometric data by using a range of machine learning techniques to find patterns predictive of citation count using both article content and available metadata. As the input collection, we use the CORD-19 corpus containing research articles—mostly from biology and medicine—applicable to the COVID-19 crisis. Our study employs a combination of state-of-the-art machine learning techniques for text understanding, including embeddings-based language model BERT, several systems for detection and semantic expansion of entities: ConceptNet, Pubtator and ScispaCy. To interpret the resulting models, we use several explanation algorithms: random forest feature importance, LIME, and Shapley values. We compare the performance and comprehensibility of models obtained by “black-box” machine learning algorithms (neural networks and random forests) with models built with rule learning (CORELS, CBA), which are intrinsically explainable. Multiple rules were discovered, which referred to biomedical entities of potential interest. Of the rules with the highest lift measure, several rules pointed to dipeptidyl peptidase4 (DPP4), a known MERS-CoV receptor and a critical determinant of camel to human transmission of the camel coronavirus (MERS-CoV). Some other interesting patterns related to the type of animal investigated were found. Articles referring to bats and camels tend to draw citations, while articles referring to most other animal species related to coronavirus are lowly cited. Bat coronavirus is the only other virus from a non-human species in the betaB clade along with the SARS-CoV and SARS-CoV-2 viruses. MERS-CoV is in a sister betaC clade, also close to human SARS coronaviruses. Thus both species linked to high citation counts harbor coronaviruses which are more phylogenetically similar to human SARS viruses. On the other hand, feline (FIPV, FCOV) and canine coronaviruses (CCOV) are in the alpha coronavirus clade and more distant from the betaB clade with human SARS viruses. Other results include detection of apparent citation bias favouring authors with western sounding names. Equal performance of TF-IDF weights and binary word incidence matrix was observed, with the latter resulting in better interpretability. The best predictive performance was obtained with a “black-box” method—neural network. The rule-based models led to most insights, especially when coupled with text representation using semantic entity detection methods. Follow-up work should focus on the analysis of citation patterns in the context of phylogenetic trees, as well on patterns referring to DPP4, which is currently considered as a SARS-Cov-2 therapeutic target.

Keywords: Bibliometry; CORD-19: COVID-19 open research dataset; Text analysis; SARS-CoV-2; Interpretability; Citation prediction; Phylogenetic distance; Virus clades (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04314-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04314-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04314-9

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04314-9