Music information visualization and classical composers discovery: an application of network graphs, multidimensional scaling, and support vector machines
Patrick Georges and
Aylin Seckin
Scientometrics, 2022, vol. 127, issue 5, No 7, 2277-2311
Abstract:
Abstract This article illustrates different information visualization techniques applied to a database of classical composers and visualizes both the macrocosm of the Common Practice Period and the microcosms of twentieth century classical music. It uses data on personal (composer-to-composer) musical influences to generate and analyze network graphs. Data on style influences and composers ‘ecological’ data are then combined to composer-to-composer musical influences to build a similarity/distance matrix, and a multidimensional scaling analysis is used to locate the relative position of composers on a map while preserving the pairwise distances. Finally, a support-vector machines algorithm is used to generate classification maps. This article falls into the realm of an experiment in music education, not musicology. The ultimate objective is to explore parts of the classical music heritage and stimulate interest in discovering composers. In an age offering either inculcation through lists of prescribed composers and compositions to explore, or music recommendation algorithms that automatically propose works to listen to next, the analysis illustrates an alternative path that might promote the active rather than passive discovery of composers and their music in a less restrictive way than inculcation through prescription.
Keywords: Digital humanities; Musicological data visualization; Network graphs; Similarity indices; Multidimensional scaling; Support-vector machines; Music information retrieval; Music heritage and education (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04331-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04331-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-022-04331-8
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().