EconPapers    
Economics at your fingertips  
 

Citation burst prediction in a bibliometric network

Tehmina Amjad, Nafeesa Shahid, Ali Daud () and Asma Khatoon
Additional contact information
Tehmina Amjad: IIU
Nafeesa Shahid: IIU
Ali Daud: Zhejiang Ocean University
Asma Khatoon: IIU

Scientometrics, 2022, vol. 127, issue 5, No 25, 2773-2790

Abstract: Abstract In the field of computer science, both journal and conference publications are considered valuable. The popularity of an author is mostly determined by the paper’s high citations in a short time. Features that can help to attract higher visibility are not yet thoroughly investigated in the literature. This study aims to investigate the impact of the several features on received citations, for articles published in both journals or conferences. The correlation analysis and multiple linear regression models are applied to explore the strength of all related features. The study helps in finding the impact of the individual features on the number of citations both for journals and conferences, and to predict future citations. AMiner citation dataset has been used for experimental analysis. The findings of the study show that in the case of journal publications, “author first-year citations” and “author total citation” are the most important features. While, in the case of conference publications, “author total citation” is more effective as compared to other features. In the case of journal publications, the multiple linear regression model shows the coefficient of determination (R2) is 0.975 and accuracy 0.846. For the conference publications, the R2 value and accuracy are 0.877 and 0.846, respectively.

Keywords: Journal; Conference; Citation burst; Citations analysis; Features; Correlation; Multiple linear regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04344-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04344-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04344-3

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04344-3