EconPapers    
Economics at your fingertips  
 

A multi-view method of scientific paper classification via heterogeneous graph embeddings

Yiqin Lv, Zheng Xie (), Xiaojing Zuo and Yiping Song
Additional contact information
Yiqin Lv: National University of Defense Technology
Zheng Xie: National University of Defense Technology
Xiaojing Zuo: National University of Defense Technology
Yiping Song: National University of Defense Technology

Scientometrics, 2022, vol. 127, issue 8, No 25, 4847-4872

Abstract: Abstract The classification task of scientific papers can be implemented based on contents or citations. In order to improve the performance on this task, we express papers as nodes and integrate scientific papers’ contents and citations into a heterogeneous graph. It has two types of edges. One type represents the semantic similarity between papers, derived from papers’ titles and abstracts. The other type represents the citation relationship between papers and the journals or proceedings of conferences of their references. We utilize a contrastive learning method to embed the nodes in the heterogeneous graph into a vector space. Then, we feed the paper node vectors into classifiers, such as the decision tree, multilayer perceptron, and so on. We conduct experiments on three datasets of scientific papers: the Microsoft Academic Graph with 63,211 scientific papers in 20 classes, the Proceedings of the National Academy of Sciences with 38,243 scientific papers in 18 classes, and the American Physical Society with 443,845 scientific papers in 5 classes. The experimental results on the multi-class task show that our multi-view method scores the classification accuracy up to 98%, outperforming state-of-the-arts.

Keywords: Paper classification; Heterogeneous graph; Contrastive learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04419-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04419-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04419-1

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04419-1