User engagement with scholarly tweets of scientific papers: a large-scale and cross-disciplinary analysis
Zhichao Fang (),
Rodrigo Costas () and
Paul Wouters ()
Additional contact information
Zhichao Fang: Renmin University of China
Rodrigo Costas: Leiden University
Paul Wouters: Leiden University
Scientometrics, 2022, vol. 127, issue 8, No 12, 4523-4546
Abstract:
Abstract This study investigates the extent to which scholarly tweets of scientific papers are engaged with by Twitter users through four types of user engagement behaviors, i.e., liking, retweeting, quoting, and replying. Based on a sample consisting of 7 million scholarly tweets of Web of Science papers, our results show that likes is the most prevalent engagement metric, covering 44% of scholarly tweets, followed by retweets (36%), whereas quotes and replies are only present for 9% and 7% of all scholarly tweets, respectively. From a disciplinary point of view, scholarly tweets in the field of Social Sciences and Humanities are more likely to trigger user engagement over other subject fields. The presence of user engagement is more associated with other Twitter-based factors (e.g., number of mentioned users in tweets and number of followers of users) than with science-based factors (e.g., citations and Mendeley readers of tweeted papers). Building on these findings, this study sheds light on the possibility to apply user engagement metrics in measuring deeper levels of Twitter reception of scholarly information.
Keywords: Altmetrics; Social media metrics; Twitter engagement; Scholarly communication; Retweet (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04468-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:127:y:2022:i:8:d:10.1007_s11192-022-04468-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-022-04468-6
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().