A transfer learning approach to interdisciplinary document classification with keyword-based explanation
Xiaoming Huang (),
Peihu Zhu (),
Yuwen Chen () and
Jian Ma ()
Additional contact information
Xiaoming Huang: Sun Yat-Sen University
Peihu Zhu: City University of Hong Kong
Yuwen Chen: City University of Hong Kong
Jian Ma: City University of Hong Kong
Scientometrics, 2023, vol. 128, issue 12, No 9, 6449-6469
Abstract:
Abstract With the exponential increase of interdisciplinary research, identifying accurate disciplines of scientific documents has become increasingly important in various research management tasks. Interdisciplinary classification, which classifies documents into multiple disciplines, is essential for multidisciplinary research development. Due to the scarcity of labeled multidiscipline data, existing scientific document classification methods can't solve the interdisciplinary issue. Most of them also have the problem of explainability with curtly providing classification results. This study proposes an explainable transfer-learning-based classification method for interdisciplinary documents. First, we trained a single-discipline classification model using existing labeled single-discipline documents. Then, we transfer the knowledge learned from single-discipline classification to interdisciplinary classification to address the scarcity of labeled interdisciplinary data. We also added discipline co-occurrence information into our proposed model. Finally, we obtained our final model by training the transferred model with interdisciplinary data. In addition, keyword-based explanations for classifying texts are provided by employing layer-wise relevance propagation. Experiments on real-life NSFC data show the effectiveness of the proposed method, which can promote interdisciplinary development by constructing an efficient and fair classification for interdisciplinary review systems.
Keywords: Transfer learning; Interdisciplinary classification; Research management; Scientific documents classification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-023-04825-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:128:y:2023:i:12:d:10.1007_s11192-023-04825-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-023-04825-z
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().