AGSTA-NET: adaptive graph spatiotemporal attention network for citation count prediction
Bin Wang,
Feng Wu and
Lukui Shi ()
Additional contact information
Bin Wang: Hebei University of Technology
Feng Wu: Institute of Scientific and Technical Information of Heibei Province
Lukui Shi: Hebei University of Technology
Scientometrics, 2023, vol. 128, issue 1, No 22, 541 pages
Abstract:
Abstract With the rapid development of scientific research, a large number of scientific papers are produced every year. It is very important to find influential papers quickly from the massive literature resources, which can not only help researchers identify papers with reference value, but also help scientific research management departments to allocate resources. Among the quantification measures of academic impact, citation count stands out for its frequent use in the research community. Previous studies have either treated papers as independent individuals without considering their citation relationships in the citation network or have not adequately considered the long-time dependence of citation time series. In this paper, we consider the structural features of citation networks and propose a deep learning method AGSTA-NET from the perspective of spatio-temporal fusion, which models heterogeneous citation networks formed early in the publication of a paper and predicts the citation count for an article in the next few years. AGSTA-NET contains capturing module of spatial dependence and capturing module of time dependence. It could fully dig the complex spatio-temporal information from the dynamic heterogeneous citation network by only inputting the heterogeneous citation network to the model. Meanwhile, the sub-networks designed in this paper could adaptively determine the threshold of the loss function according to the samples for better training. Experiments validate that AGSTA-NET outperforms current state-of-the-art methods in citation count prediction.
Keywords: Citation count prediction; Graph neural network; Attention; Spatiotemporal; Recurrent neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04541-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:128:y:2023:i:1:d:10.1007_s11192-022-04541-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-022-04541-0
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().