EconPapers    
Economics at your fingertips  
 

Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion

Yonghe Lu (), Meilu Yuan (), Jiaxin Liu () and Minghong Chen ()
Additional contact information
Yonghe Lu: Sun Yat-Sen University
Meilu Yuan: Sun Yat-Sen University
Jiaxin Liu: Sun Yat-Sen University
Minghong Chen: Sun Yat-Sen University

Scientometrics, 2023, vol. 128, issue 2, No 22, 1367-1393

Abstract: Abstract With the growth in scientific papers, citation recommendation which enables researchers to find useful references efficiently and further to promote academic communication and cooperation has become increasingly important. However, little research has been done to explore how to recognize the semantically relevant references according to research scenarios and the context of the paper citation. Motivated by the research gap, the present study attempts to adopt SciBERT to represent text and expand its semantics through the fusion of WordNet knowledge. Further, core themes from references are automatically extracted by TextRank to solve the problem of incomplete content extraction. In this case, the model named SciBERT + DPCNN is constructed for semantic representation and citation recommendation of scientific papers. Afterwards, multiple experiments are designed and implemented in three parts to verify the effectiveness of the model. The first result is that the outcomes of SciBERT + DPCNN obtain the highest among all baseline models. Additionally, when the model performs in 1 WordNet fusion at the end of the sentence, the best outcomes are 84.72%, 84.80%, 84.72%, and 84.71% in terms of accuracy, precision, recall, and F1-score, respectively. Ultimately, for the classification results of the reference structure, the long text ‘title + abstract + TextRank full text (except the title and abstract)’ outperforms most short text ‘title + abstract’ without WordNet fusion. However, when WordNet is fused for the classification, the short text is mostly more accurate than the long text.

Keywords: Citation Recommendation; Semantic Representation; Scientific Papers; Multiple Semantics Fusion; SciBERT (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11192-022-04566-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04566-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-022-04566-5

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:128:y:2023:i:2:d:10.1007_s11192-022-04566-5