EconPapers    
Economics at your fingertips  
 

Researcher capacity estimation based on the Q model: a generalized linear mixed model perspective

Boris Forthmann ()
Additional contact information
Boris Forthmann: University of Münster

Scientometrics, 2023, vol. 128, issue 8, No 24, 4753-4764

Abstract: Abstract Chance models of scientific creative productivity allow estimation of researcher capacity. One prominent such model is the Q model in which the impact of a scholarly work is modeled as a multiplicative function of researcher capacity and a potential impact (i.e., luck) parameter. Previous work estimated researcher capacity based on an approximation of the Q parameter. In this work, however, I outline how the Q model can be estimated within the framework of generalized linear mixed models. This way estimates of researcher capacity (and all other parameters of the Q model) are readily available and obtained by standard statistical software packages. Usage of such software further allows comparing different distributional assumptions and calculation of reliability of the Q parameter (i.e., researcher capacity). This is illustrated for a large dataset of multidisciplinary scientists (N = 20,296). The Poisson Q model was found to have negligibly better predictive accuracy than the original normal Q model. Reliability estimates revealed excellent reliability of Q estimates with conditional reliability being mostly in acceptable ranges. Reliability of Q parameter estimates further depended heavily on the number of publications of a scientist with reliability increasing with the number of papers. The future and limitations of the Q model in the context of researcher capacity estimation are thoroughly discussed.

Keywords: Q model; Researcher capacity; Generalized linear mixed model; 62P25 (search for similar items in EconPapers)
JEL-codes: C18 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-023-04756-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:128:y:2023:i:8:d:10.1007_s11192-023-04756-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-023-04756-9

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:128:y:2023:i:8:d:10.1007_s11192-023-04756-9