ABCal: a Python package for author bias computation and scientometric plotting for reviews and meta-analyses
Louis-Stéphane Clercq ()
Additional contact information
Louis-Stéphane Clercq: South African National Biodiversity Institute
Scientometrics, 2024, vol. 129, issue 1, No 21, 600 pages
Abstract:
Abstract Systematic reviews are critical summaries of the exiting literature on a given subject and, when combined with meta-analysis, provides a quantitative synthesis of evidence to direct and inform future research. Such reviews must, however, account for complex sources of between study heterogeneity and possible sources of bias, such as publication bias. This paper presents the methods and results of a research study using a newly developed software tool called ABCal (version 1.0.2) to compute and assess author bias in the literature, providing a quantitative measure for the possible effect of overrepresented authors introducing bias to the overall interpretation of the literature. ABCal includes a new metric referred to as author bias, which is a measure of potential biases per paper when the frequency or proportions of contributions from specific authors are considered. The metric is able to account for a significant portion of the observed heterogeneity between studies included in meta-analyses. A meta-regression between observed effect measures and author bias values revealed that higher levels of author bias were associated with higher effect measures while lower author bias was evident for studies with lower effect measures. Furthermore, the software's capabilities to analyse authorship contributions and produce scientometric plots was able to reveal distinct patterns in both the temporal and geographic distributions of publications, which may relate to any evident publication bias. Thus, ABCal can aid researchers in gaining a deeper understanding of the research landscape and assist in identifying both key contributors and holistic research trends.
Keywords: Reviews; Authorship; Bias detection; Author bias; Scientometric; Plots (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-023-04880-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:129:y:2024:i:1:d:10.1007_s11192-023-04880-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-023-04880-6
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().