EconPapers    
Economics at your fingertips  
 

Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features

Xiuxiu Li, Mingyang Wang () and Xu Liu
Additional contact information
Xiuxiu Li: Northeast Forestry University
Mingyang Wang: Northeast Forestry University
Xu Liu: Northeast Forestry University

Scientometrics, 2024, vol. 129, issue 6, No 12, 3225-3244

Abstract: Abstract Academic collaboration can break through the geographical limitations of scholars and promote academic output among scholars. Academic big data will provide an important data source for more comprehensive and accurate modeling scholars due to the coexistence environment of various academic entities. Based on academic big data, an end-to-end model HCSP was proposed for predicting collaborative relationships among scholars. HCSP models scholars from two aspects: content-based features and structure-based features, and calculate the similarity between scholars based on this to predict whether there will be academic collaboration between scholars. When learning the content-based features of scholars, HCSP utilizes LSTM and multi-head attention mechanism to extract the overall and recent research interests of scholars, to capture the diversity of scholars’ research interests. When learning the structure-based features of scholars, HCSP adopts a subgraph sampling strategy based on meta paths to model the structural features of scholar nodes in heterogeneous academic network. By integrating scholars’ content-based and structure-based features, HCSP calculates the similarity between scholars to determine whether there will be a collaborative relationship between them. The experimental results indicate that the HCSP model achieves better prediction performance compared to the baseline models. It can be seen that integrating scholars’ content-based and structure-based characteristics can indeed provide a richer and more effective modeling basis for predicting their academic collaborative relationships.

Keywords: Collaborative relationship prediction; Research interests; Heterogeneous academic network; Network embedding (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-024-05012-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05012-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-024-05012-4

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05012-4