EconPapers    
Economics at your fingertips  
 

Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning

Qiang Gao and Man Jiang ()
Additional contact information
Qiang Gao: Shandong University of Political Science and Law
Man Jiang: Wuhan University

Scientometrics, 2024, vol. 129, issue 7, No 15, 4043-4070

Abstract: Abstract As a driving force behind innovation, technological fusion has emerged as a prevailing trend in knowledge innovation. However, current research lacks the semantic analysis and identification of knowledge fusion across technological domains. To bridge this gap, we propose a strategy that combines the latent Dirichlet allocation (LDA) topic model and the Doc2vec neural network semantic model to identify fusion topics across various technology domains. Then, we fuse the semantic information of patents to measure the characteristics of fusion topics in terms of knowledge diversity, homogeneity and cohesion. Applying this method to a case study in the fields of digital medicine and machine learning, we identify six fusion topics from two technology domains, revealing two distinct trends: diffusion from the center to the periphery and clustering from the periphery to the center. The study shows that the fusion measure of topic-semantic granularity can reveal the variability of technology fusion processes at a profound level. The proposed research method will benefit scholars in conducting multi-domain technology fusion research and gaining a deeper understanding of the knowledge fusion process across technology domains from a semantic perspective.

Keywords: Technology fusion; Latent Dirichlet allocation; Doc2vec; Semantic information; Fusion metrics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-024-05069-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05069-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-024-05069-1

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05069-1