EconPapers    
Economics at your fingertips  
 

A validation test of the Uzzi et al. novelty measure of innovation and applications to collaboration patterns between institutions

Yuefen Wang (), Lipeng Fan () and Lei Wu ()
Additional contact information
Yuefen Wang: Tianjin Normal University
Lipeng Fan: Tianjin Normal University
Lei Wu: Shandong Normal University

Scientometrics, 2024, vol. 129, issue 7, No 28, 4379-4394

Abstract: Abstract Exploring a robust and universal appeal bibliometric indicator for assessing creativity is essential but challenging. The novelty measure of innovation proposed by Uzzi et al. (NoveltyU) has sparked considerable interest and debate. Thus, further validation and understanding of its portfolio form of novelty and scope of application are necessary. This paper delves into the calculation and application of the NoveltyU method to shed light on its effectiveness and scope. Analysis of the calculation process reveals that journal pairs with higher novelty often span independent fundamental areas, while those with lower novelty tend to focus on similar and applied fields. Utilizing collaboration patterns between institutions, as discussed in our prior study (Fan et al., Scientometrics 125:1179–1196, 2020), offers insight into the method’s performance in real-world contexts. Results consistently show higher mean NoveltyU values in MM pattern over time, affirming the method’s validity. Categorizing papers into high conventional, low conventional, low novel, and high novel categories unveils higher overlap degree of terms among different patterns in high novel papers. Moreover, leading terms in MM pattern exhibit specific information, while delay terms tend to be more general, and simultaneous terms are even more so. These findings offer valuable insights into identifying hot and frontier topics, bolstering the credibility and application potential of the NoveltyU method, aligning with the broader objective of establishing valid measures of innovativeness in research.

Keywords: Novelty; Atypical combination; Institutional collaborative pattern; Artificial intelligence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11192-024-05071-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05071-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192

DOI: 10.1007/s11192-024-05071-7

Access Statistics for this article

Scientometrics is currently edited by Wolfgang Glänzel

More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05071-7