Research paper recommendation system based on multiple features from citation network
Tayyaba Kanwal and
Tehmina Amjad ()
Additional contact information
Tayyaba Kanwal: International Islamic University
Tehmina Amjad: International Islamic University
Scientometrics, 2024, vol. 129, issue 9, No 17, 5493-5531
Abstract:
Abstract With tremendous growth in the volume of published scholarly work, it becomes quite difficult for researchers to find appropriate documents relevant to their research topic. Many research paper recommendation approaches have been proposed and implemented which include collaborative filtering, content-based, metadata, link-based and multi-level citation network. In this research, a novel Research paper Recommendation system is proposed by integrating Multiple Features (RRMF). RRMF constructs a multi-level citation network and collaboration network of authors for feature integration. The structure and semantic based relationships are identified from the citation network whereas key authors are extracted from collaboration network for the study. For experimentation and analysis, AMiner v12 DBLP-Citation Network is used that covers 4,894,081 academic papers and 45,564,149 citation relationships. The information retrieval metrices including Mean Average Precision, Mean Reciprocal Rank and Normalized Discounted Cumulative Gain are used for evaluating the performance of proposed system. The research results of proposed approach RRMF are compared with baseline Multilevel Simultaneous Citation Network (MSCN) and Google Scholar. Consequently, comparison of RRMF showed 87% better recommendations than the traditional MSCN and Google Scholar.
Keywords: Recommendation system; Citation network; Centrality measures; Collaboration network; Academic measures; Information retrieval (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11192-024-05109-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:129:y:2024:i:9:d:10.1007_s11192-024-05109-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-024-05109-w
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().