Detecting the knowledge structure of bioinformatics by mining full-text collections
Min Song () and
Su Yeon Kim ()
Additional contact information
Min Song: Yonsei University
Su Yeon Kim: Yonsei University
Scientometrics, 2013, vol. 96, issue 1, No 12, 183-201
Abstract:
Abstract Bioinformatics is a fast-growing, diverse research field that has recently gained much public attention. Even though there are several attempts to understand the field of bioinformatics by bibliometric analysis, the proposed approach in this paper is the first attempt at applying text mining techniques to a large set of full-text articles to detect the knowledge structure of the field. To this end, we use PubMed Central full-text articles for bibliometric analysis instead of relying on citation data provided in Web of Science. In particular, we develop text mining routines to build a custom-made citation database as a result of mining full-text. We present several interesting findings in this study. First, the majority of the papers published in the field of bioinformatics are not cited by others (63 % of papers received less than two citations). Second, there is a linear, consistent increase in the number of publications. Particularly year 2003 is the turning point in terms of publication growth. Third, most researches of bioinformatics are driven by USA-based institutes followed by European institutes. Fourth, the results of topic modeling and word co-occurrence analysis reveal that major topics focus more on biological aspects than on computational aspects of bioinformatics. However, the top 10 ranked articles identified by PageRank are more related to computational aspects. Fifth, visualization of author co-citation analysis indicates that researchers in molecular biology or genomics play a key role in connecting sub-disciplines of bioinformatics.
Keywords: Text mining; PubMed Central; Bioinformatics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-012-0900-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:96:y:2013:i:1:d:10.1007_s11192-012-0900-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-012-0900-9
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().