An exploration of link-based knowledge map in academic web space
Bo Yang () and
Ying Sun ()
Additional contact information
Bo Yang: Nanjing Agricultural University
Ying Sun: University at Buffalo
Scientometrics, 2013, vol. 96, issue 1, No 15, 239-253
Abstract:
Abstract The World Wide Web has become an important source of academic information. The linking feature of the Web has been used to study the structure of academic web, as well as the presence of academic and research institutes on the Web. In this paper, we propose an integrated model for exploring the subject macrostructure of a specific academic topic on the Web and automatically depicting the knowledge map that is closer to what a domain expert would expect. The model integrates a hyperlink-induced topic search (HITS)-based link network extending strategy and a semantic based clustering algorithm with the aid of co-link analysis and social network analysis (SNA) to discover subject-based communities in the academic web space. We selected to use websites as analytical units rather than web pages because of the subject stability of a website. Compared with traditional techniques in Webometrics and SNA that have been used for such analyses, our model has the advantages of working on open web space (capability to explore unknown web resources and identify important ones) and of automatically building an extendable and hierarchical web knowledge map. The experiment in the area of Information Retrieval shows the effectiveness of the integrated model in analyzing and portraying of subject clustering phenomenon in academic web space.
Keywords: Web knowledge map; Subject-based community; Link analysis; Knowledge discovery (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11192-012-0919-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:scient:v:96:y:2013:i:1:d:10.1007_s11192-012-0919-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11192
DOI: 10.1007/s11192-012-0919-y
Access Statistics for this article
Scientometrics is currently edited by Wolfgang Glänzel
More articles in Scientometrics from Springer, Akadémiai Kiadó
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().