Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind
Ehsan Azmoodeh () and
Lauri Viitasaari ()
Statistical Inference for Stochastic Processes, 2015, vol. 18, issue 3, 205-227
Abstract:
Fractional Ornstein–Uhlenbeck process of the second kind $$(\text {fOU}_{2})$$ ( fOU 2 ) is a solution of the Langevin equation $$\mathrm {d}X_t=-\theta X_t\,\mathrm {d}t+\mathrm {d}Y_t^{(1)}, \ \theta >0$$ d X t = - θ X t d t + d Y t ( 1 ) , θ > 0 with a Gaussian driving noise $$ Y_t^{(1)} := \int ^t_0 e^{-s} \,\mathrm {d}B_{a_s}$$ Y t ( 1 ) : = ∫ 0 t e - s d B a s , where $$ a_t= H e^{\frac{t}{H}}$$ a t = H e t H and $$B$$ B is a fractional Brownian motion with Hurst parameter $$H \in (0,1)$$ H ∈ ( 0 , 1 ) . In this article we consider the case $$H>\frac{1}{2}$$ H > 1 2 , and by using the ergodicity of $$\text {fOU}_{2}$$ fOU 2 process we construct consistent estimators for the drift parameter $$\theta $$ θ based on discrete observations in two possible cases: $$(i)$$ ( i ) the Hurst parameter $$H$$ H is known and $$(ii)$$ ( i i ) the Hurst parameter $$H$$ H is unknown. Moreover, using Malliavin calculus techniques we prove central limit theorems for our estimators which are valid for the whole range $$H \in (\frac{1}{2},1)$$ H ∈ ( 1 2 , 1 ) . Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Fractional Ornstein–Uhlenbeck processes; Malliavin calculus; Multiple Wiener integrals; Central limit theorem (CLT); Parameter estimation; 60G22; 60H07; 62F99 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11203-014-9111-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:18:y:2015:i:3:p:205-227
Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2
DOI: 10.1007/s11203-014-9111-8
Access Statistics for this article
Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin
More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().