EconPapers    
Economics at your fingertips  
 

Estimation of cusp location of stochastic processes: a survey

S. Dachian, N. Kordzakhia, Yu. A. Kutoyants () and A. Novikov
Additional contact information
S. Dachian: University of Lille
N. Kordzakhia: Macquarie University
Yu. A. Kutoyants: Le Mans University
A. Novikov: University of Technology Sydney

Statistical Inference for Stochastic Processes, 2018, vol. 21, issue 2, No 6, 345-362

Abstract: Abstract We present a review of some recent results on estimation of location parameter for several models of observations with cusp-type singularity at the change point. We suppose that the cusp-type models fit better to the real phenomena described usually by change point models. The list of models includes Gaussian, inhomogeneous Poisson, ergodic diffusion processes, time series and the classical case of i.i.d. observations. We describe the properties of the maximum likelihood and Bayes estimators under some asymptotic assumptions. The asymptotic efficiency of estimators are discussed as well and the results of some numerical simulations are presented. We provide some heuristic arguments which demonstrate the convergence of log-likelihood ratios in the models under consideration to the fractional Brownian motion.

Keywords: Change-point models; Cusp-type singularity; Inhomogeneous Poisson processes; Diffusion processes; Maximum likelihood and Bayes estimators; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11203-018-9171-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9171-2

Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2

DOI: 10.1007/s11203-018-9171-2

Access Statistics for this article

Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin

More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9171-2