Optimal iterative threshold-kernel estimation of jump diffusion processes
José E. Figueroa-López (),
Cheng Li () and
Jeffrey Nisen ()
Additional contact information
José E. Figueroa-López: Washington University in St. Louis
Cheng Li: Citadel Securities
Jeffrey Nisen: Barclays
Statistical Inference for Stochastic Processes, 2020, vol. 23, issue 3, No 3, 517-552
Abstract:
Abstract In this paper, we propose a new threshold-kernel jump-detection method for jump-diffusion processes, which iteratively applies thresholding and kernel methods in an approximately optimal way to achieve improved finite-sample performance. As in Figueroa-López and Nisen (Stoch Process Appl 123(7):2648–2677, 2013), we use the expected number of jump misclassifications as the objective function to optimally select the threshold parameter of the jump detection scheme. We prove that the objective function is quasi-convex and obtain a new second-order infill approximation of the optimal threshold in closed form. The approximate optimal threshold depends not only on the spot volatility $$\sigma _t$$ σ t , but also the jump intensity and the value of the jump density at the origin. Estimation methods for these quantities are then developed, where the spot volatility is estimated by a kernel estimator with thresholding and the value of the jump density at the origin is estimated by a density kernel estimator applied to those increments deemed to contain jumps by the chosen thresholding criterion. Due to the interdependency between the model parameters and the approximate optimal estimators built to estimate them, a type of iterative fixed-point algorithm is developed to implement them. Simulation studies for a prototypical stochastic volatility model show that it is not only feasible to implement the higher-order local optimal threshold scheme but also that this is superior to those based only on the first order approximation and/or on average values of the parameters over the estimation time period.
Keywords: Jump detection; Lévy and additive processes; Nonparametric estimation; Thresholded estimators; Volatility estimation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11203-020-09211-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:23:y:2020:i:3:d:10.1007_s11203-020-09211-7
Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2
DOI: 10.1007/s11203-020-09211-7
Access Statistics for this article
Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin
More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().