EconPapers    
Economics at your fingertips  
 

A Kalman particle filter for online parameter estimation with applications to affine models

Jian He (), Asma Khedher () and Peter Spreij ()
Additional contact information
Jian He: University of Amsterdam
Asma Khedher: University of Amsterdam
Peter Spreij: University of Amsterdam

Statistical Inference for Stochastic Processes, 2021, vol. 24, issue 2, No 4, 353-403

Abstract: Abstract In this paper we address the problem of estimating the posterior distribution of the static parameters of a continuous-time state space model with discrete-time observations by an algorithm that combines the Kalman filter and a particle filter. The proposed algorithm is semi-recursive and has a two layer structure, in which the outer layer provides the estimation of the posterior distribution of the unknown parameters and the inner layer provides the estimation of the posterior distribution of the state variables. This algorithm has a similar structure as the so-called recursive nested particle filter, but unlike the latter filter, in which both layers use a particle filter, our algorithm introduces a dynamic kernel to sample the parameter particles in the outer layer to obtain a higher convergence speed. Moreover, this algorithm also implements the Kalman filter in the inner layer to reduce the computational time. This algorithm can also be used to estimate the parameters that suddenly change value. We prove that, for a state space model with a certain structure, the estimated posterior distribution of the unknown parameters and the state variables converge to the actual distribution in $$L^p$$ L p with rate of order $${\mathcal {O}}(N^{-\frac{1}{2}}+\varDelta ^{\frac{1}{2}})$$ O ( N - 1 2 + Δ 1 2 ) , where N is the number of particles for the parameters in the outer layer and $$\varDelta $$ Δ is the maximum time step between two consecutive observations. We present numerical results of the implementation of this algorithm, in particularly we implement this algorithm for affine interest models, possibly with stochastic volatility, although the algorithm can be applied to a much broader class of models.

Keywords: Affine process; State space model; Kalman filter; Particle filter; Parameter estimation; Posterior distribution; 62P05; 65C35; 93E11 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11203-021-09239-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:24:y:2021:i:2:d:10.1007_s11203-021-09239-3

Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2

DOI: 10.1007/s11203-021-09239-3

Access Statistics for this article

Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin

More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sistpr:v:24:y:2021:i:2:d:10.1007_s11203-021-09239-3