EconPapers    
Economics at your fingertips  
 

Hypotheses testing and posterior concentration rates for semi-Markov processes

I. Votsi (), G. Gayraud, V. S. Barbu and N. Limnios
Additional contact information
I. Votsi: Institut du Risque et de l’Assurance, Le Mans Université
G. Gayraud: Université de Technologie de Compiègne, LMAC (Laboratory of Applied Mathematics of Compiègne)
V. S. Barbu: Université de Rouen-Normandie, UMR 6085
N. Limnios: Université de Technologie de Compiègne, LMAC (Laboratory of Applied Mathematics of Compiègne)

Statistical Inference for Stochastic Processes, 2021, vol. 24, issue 3, No 7, 707-732

Abstract: Abstract In this paper, we adopt a nonparametric Bayesian approach and investigate the asymptotic behavior of the posterior distribution in continuous-time and general state space semi-Markov processes. In particular, we obtain posterior concentration rates for semi-Markov kernels. For the purposes of this study, we construct robust statistical tests between Hellinger balls around semi-Markov kernels and present some specifications to particular cases, including discrete-time semi-Markov processes and countable state space Markov processes. The objective of this paper is to provide sufficient conditions on priors and semi-Markov kernels that enable us to establish posterior concentration rates.

Keywords: Bayesian nonparametrics; Posterior concentration rates; Semi-Markov processes; Semi-Markov kernels; Robust statistical tests (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11203-021-09247-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:24:y:2021:i:3:d:10.1007_s11203-021-09247-3

Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2

DOI: 10.1007/s11203-021-09247-3

Access Statistics for this article

Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin

More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sistpr:v:24:y:2021:i:3:d:10.1007_s11203-021-09247-3